Расчетные методы оценки радиационной опасности и параметров защиты от внешнего облучения
Гигиена и экология / Расчетные методы оценки радиационной опасности и параметров защиты от внешнего облучения
Страница 7

Учебная инструкция

по расчету параметров защиты от внешнего γ-облучения на основании определения мощности поглощенных в воздухе доз, выраженных в микрогреях в час

Для оценки эффективности противорадиационной защиты при работе с источниками гамма-излучения и расчета, в случае необходимости, ее параметров необходимо располагать следующими исходными данными об условиях облучения:

- активность источника гамма-излучения в беккерелях (Бк);

- энергию гамма-излучения в мега-электронвольтах (МэВ);

- расстояние от источника излучения до объекта облучения в метрах (м);

- время облучения в часах (ч);

- керма радионуклида;

- мощность поглощенной в воздухе дозы в микрогреях в час, (мкГр/ч);

- материал защиты (его название и плотность);

Оценка соответствия параметров противорадиационной защиты требованиям действующего законодательства базируется на сравнении расчетной мощности поглощенной в воздухе дозы (ПД) с допустимой мощностью поглощенной в воздухе дозы (ДМД).

Величину мощности поглощенной в воздухе дозы внешнего облучения рассчитывают по формуле:

Р = , (4)

где: Р – мощность поглощенной в воздухе дозы Гр/ч (рассчитанная по этой формуле мощность поглощенной в воздухе дозы выражена в Гр/ч. Для перерасчета в мкГр/ч ее умножают на 10-6);

А ‑ активность источника γ-излучения в беккерелях (Бк);

G ‑ керма радионуклида ‑ суммарная начальная кинетическая энергия всех заряженных частичек, создаваемых в единице массы облученной среды действием вторично ионизирующего излучения. Системной единицей кермы является Грей, внесистемной – рад. Значение кермы находят или в специальной таблице или рассчитывают умножением гамма-постоянной радионуклида на коэффициент ‑ 6,55, а γ-постоянную находят в табл. 1 (“Физические характеристики радионуклидов”);

t ‑ время облучения в секундах (если это время выражено в часах, то для перерасчета на время, выраженное в секундах, его умножают на 3 600);

R ‑ расстояние от источника излучения до объекта облучения в метрах (м).

Аналогично расчетам по формулам (1) и (2), преобразовав формулу (4) относительно А, t или R, можно, при необходимости, определить параметры защиты количеством (активностью), расстоянием или временем.

При этом в преобразованных формулах мощность дозы обозначается как Р0 и должна отвечать величине допустимой мощности поглощенной в воздухе дозы (см. табл. 6).

Расчет защиты от внешнего γ-облучения с помощью экранов проводится аналогично приведенному выше.

Первый этап расчета защиты с помощью экранов ‑ расчет мощности поглощенной в воздухе дозы от конкретного источника по приведенной выше формуле.

Второй этап расчета ‑ определение необходимой кратности ослабления мощности поглощенной в воздухе дозы. Для этого пользуются формулой (5):

К = (5)

где: К ‑ кратность (коэффициент ослабления);

Р ‑ рассчитанная фактическая мощность поглощенной в воздухе дозы;

Р0 – допустимая мощность поглощенной в воздухе дозы (см. табл. 6).

Третий этап ‑ нахождение толщины защитного экрана из соответствующего материала (свинца, железа, бетона) по величинам необходимой кратности ослабления γ-излучения и его энергии. При этом используют те же таблицы 3, 4, 5.

Таблица 6

Допустимые мощности поглощенной в воздухе дозы гамма-излучения, которые используются для проектирования защиты от внешнего облучения

Категории облучённых лиц

Назначение помещений и территорий

Продолжи-тельность облучения часов/год

Допустимая мощность поглощенной в воздухе дозы мкЗв/час

персонал

Лица категории А

Помещения постоянного пребывания персонала

1 700

6,0

Помещения временного пребывания персонала

850

12,0

Лица категории Б

Помещения и территория объекта, где могут находиться лица, которые относятся к категории Б

2 000

1,2

Лица категории В

Другие помещения и территории

8 800

0,06

Примечание: числовые значения ДМПД приведены с двойным коэффициентом запаса, что обусловлено особенностями проектирования защиты.

Страницы: 2 3 4 5 6 7 8 9 10 11 12

Смотрите также

Влияние низкотемпературного закаливания на протеолитическую активность и содержание фотосинтетических пигментов в листьях проростков озимой пшеницы
На проростках озимой пшеницы (Тп11сит aestivum 1.) изучена динамика активности амидаз, цистеиновых про-теиназ, а также содержания фотосинтетических пигментов при холодовом (4°С) закаливании. Показ ...

Основные функции и принципы экологической политики.
Комплексный характер экологических проблем требует комплексного государственного управления в области охраны окружающей среды. Ниже перечислим функции такого управления. * Экологическое прогно ...

Влияние окружающей среды на живые организмы
Все  процессы  в  биосфере   взаимосвязаны.   Человечество   -   лишь незначительная часть биосферы,  а  человек  является  л ...

Разделы